Unterrichtsmaterial: Mathematik

Film: Ähnlichkeit und zentrische Streckung

Ähnlichkeit ist im normalen Sprachgebrauch ein eher schwammiger Begriff, in der Mathematik hingegen wird er sehr präzise verwendet. Der Film zeigt anhand des Beispiels von Dreiecken, dass eine Ähnlichkeit besteht, wenn die Winkel gleich groß und die Seiten zwar ungleich lang sind, aber innerhalb eines Dreiecks im selben Größenverhältnis stehen wie in dem anderen. Für die zentrische Streckung wird das Dreieck in ein Koordinatensystem übertragen. Es wird gezeigt, wie man es hier mittels der Streckungslinien verkleinern oder vergrößern kann. Es folgt die Erläuterung, wie man den Streckungsfaktor k bestimmt und wie das Dreieck au...hier weiterlesen

Produktion: 2016

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Bernoulli-Prozesse

Zufallsversuche mit zwei möglichen Ausgängen nennt man Bernoulli-Prozesse. Man spricht beim Ergebnis von Erfolg und Misserfolg, Treffer und Niete oder Eins und Null. Im Film wird ein Münzwurf als Beispiel herangezogen. Die Wahrscheinlichkeit, dass bei einem Versuch ein bestimmtes Ergebnis herauskommt, beträgt immer die Zahl der Erfolgsfälle, hier also 1, durch die Zahl der möglichen Fälle, hier also 2.Bei mehrfachen Versuchen spricht man von der Bernoulli-Kette. Für die Berechnung der Wahrscheinlichkeit, dass bei einer n-stufigen Kette k Treffer erzielt werden, stellt der Film das Galton-Brett und seine grafische Entsprechung, das Baumdiagramm, vor....hier weiterlesen

Produktion: 2014

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Winkelarten

Schneiden sich zwei Geraden, entsteht der Scheitelpunkt. An ihm entstehen durch die sich kreuzenden Geraden vier Winkel. Die Geraden werden als Schenkel oder Seiten bezeichnet. Als Scheitelwinkel werden die jeweils gegenüberliegenden Winkel bezeichnet, die immer gleich groß sind. Zwei nebeneinanderliegende Winkel am Scheitelpunkt werden Nebenwinkel genannt. Zusammengerechnet haben sie stets 180 Grad. Der Film erläutert den Nullwinkel, den Vollwinkel und all die Winkelarten, die von der Größe her dazwischen liegen. Bei mehr als Null, aber unter 90 Grad spricht man vom spitzen Winkel. Bei genau 90 Grad entsteht der rechte Winkel, bei mehr als 90 und weniger als 18...hier weiterlesen

Produktion: 2014

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Terme und Variablen

Bei einem Term handelt es sich um einen mathematischen Ausdruck, der neben Zahlen auch Klammern, Variablen und Rechenzeichen beinhalten darf, allerdings keine Relationszeichen. Zwei Terme, die durch ein Gleichheitszeichen in Beziehung gesetzt werden, nennt man eine Gleichung. Der Film erläutert, dass es sich bei Variablen um Buchstaben handelt, für die Zahlen eingesetzt werden können, also um Platzhalter. Es wird anhand von Beispielen gezeigt, wie man mittels Variablen Rechnungen, die für verschiedene Zahlen gelten, allgemeingültig aufschreiben kann. Auch wird gezeigt, dass es mehrere verschiedene Variablen pro Term geben kann und dass es abhängige und unabh...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Terme vereinfachen

Beim Rechnen mit Termen kann man es sich in der Mathematik ziemlich leicht machen: Im Film wird erklärt, wie man Terme vereinfachen kann. Dafür findet nicht nur das Kommutativgesetz mehrfach Anwendung, sondern es wird auch gezeigt, wie man lange Additionen in Multiplikationen darstellen und das Multiplikationszeichen teilweise weglassen kann. Bei kürzeren Termen ist das Rechnen noch recht leicht. Längere Terme mit mehreren Variablen erschweren den Überblick. Es wird anhand von Beispielen erklärt, wie man die verschiedenen Variablen nach dem Alphabet sortiert und dann die einzelnen Summanden zusammenfasst. Das funktioniert sogar bei Summanden, die teilweise n...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Vielecke

Jede geometrische Figur mit Ecken ist ein Vieleck, also ein Polygon. Dieser Film beschäftigt sich vor allem mit regelmäßigen Vielecken, bei denen alle Seiten gleich lang und alle Winkel gleich groß sind. Es wird an die bereits bekannten Figuren des gleichseitigen Dreiecks und des Quadrats erinnert und gezeigt, wie man bei ihnen den Flächeninhalt und den Umfang berechnet. Anhand des regelmäßigen Sechsecks wird demonstriert, wie man ein Vieleck in mehrere Dreiecke unterteilt und so den Flächeninhalt wie auch den Umfang des Vielecks berechnen kann. Das Vorgehen unterscheidet sich bei Polygonen mit einer geraden und solchen mit einer ungeraden Anzah...hier weiterlesen

Produktion: 2016

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Zinsrechnung

Zinsen begegnen uns überall im Alltag. Sie entstehen, wenn sich jemand Geld leiht, etwa bei einer Bank: Da die Bank daran verdienen möchte, dass sie ihr Geld für einen bestimmten Zeitraum verleiht, erhebt sie Zinsen darauf. Das bedeutet, dass der Leihende später die komplette Kreditsumme zuzüglich eines gewissen Prozentsatzes zurückzahlen muss, der im Vorfeld vereinbart wird. Der Film erläutert die Grundlagen der Zinsrechnung. Dafür wird an die Formel für die Prozentrechnung erinnert und gezeigt, dass die für die Zinsrechnung ganz ähnlich aussieht, dass allerdings hier auch der Zeitfaktor mit einbezogen werden muss: Zinsen = Kapital ...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Punkte und Linien

Punkte und Linien sind einfache Formen der Geometrie. Anders als Punkte, die wir mit dem Stift aufs Papier setzen, haben geometrische Punkte keine Ausdehnung, ihr Durchmesser beträgt also Null. Sie werden mit Großbuchstaben bezeichnet und durch kleine Kreuze markiert, die mittels Linien verbunden werden können. Eine Linie zwischen zwei Punkten A und B wird Strecke genannt. Die Strecke hat eine Länge, nämlich den Abstand zwischen A und B, aber keine Breite: Sie besteht aus zahllosen geometrischen Punkten. Verlängert man sie über einen der Punkte hinaus, hat sie einen Anfangs-, aber keinen Endpunkt. Man nennt sie nun Strahl, und sie ist unendlich lang. V...hier weiterlesen

Produktion: 2016

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Spiegelungen im kartesischen Koordinatensystem

Die Spiegelung im kartesischen Koordinatensystem wird zunächst an einem Punkt A demonstriert, der im ersten Quadranten liegt. Die Spiegelung wird an der y-Achse vorgenommen, und es wird gezeigt, wie das funktioniert. Der Spiegelpunkt A' hat denselben Abstand zur y-Achse wie der Punkt A, allerdings liegt er im zweiten Quadranten, und der x-Wert hat denselben Betrag wie bei A, aber ein anderes Vorzeichen.Es wird festgestellt, dass bei Spiegelungen an der y-Achse stets der y-Wert gleich bleibt und sich beim x-Wert das Vorzeichen ändert. Umgekehrt bleibt bei Spiegelungen an der x-Achse der x-Wert gleich und das Vorzeichen des y-Werts ändert sich. Es wird gezeigt, was bei Spiege...hier weiterlesen

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Verschiebungen im kartesischen Koordinatensystem

Geometrische Formen können im kartesischen Koordinatensystem verschoben werden. Zunächst wird im Film gezeigt, wie man einen einzelnen Punkt verschiebt. Dafür wird der Begriff des Vektors erläutert und gezeigt, wie man seinen Wert angibt. Der Punkt wird auf der x-Achse um sieben Einheiten nach rechts verschoben, bleibt aber auf derselben Höhe der y-Achse.Man kann geometrische Formen aber auch nach links, oben und unten verschieben. Ist bei der Verschiebung nach rechts der x-Wert höher, liegt er bei der Verschiebung nach links niedriger. Eine Verschiebung nach oben bedeutet einen höheren y-Wert, nach unten einen niedrigeren. Bei der Verschiebung geometris...hier weiterlesen

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Was ist Was - Computer und Roboter

Was ist Was TV führt seine Zuschauer in die faszinierende Welt der Bits, Bytes und künstlichen Intelligenz. Die Zuschauer erfahren, wie es im inneren eine Computers aussieht, wie Mikrochips hergestellt werden und wie die Maschinen rechnen und Befehle verstehen. Folgende Fragen werden u.a. in der Episode beantwortet: - Wie arbeitet ein Computer? - Was ist ein Mikrochip? - Wann wurde der erste Computer gebaut? - Was ist der Unterschied zwischen Hardware und Software? - Wie versteht ein Computer Befehle? - Was bedeutet künstliche Intelligenz? - Wo helfen uns Roboter bei der Arbeit? - Was ist ein Roboter? - Seit wann gibt es Roboter? Diese hochwertige Wissens-Reihe entf&uum...hier weiterlesen

Produktion: 2006

Einzellizenz oder
Klassenlizenz:
39,00 € (inkl. MwSt.)

Film: Schriftliches Addieren

Pom arbeitet in seinen Ferien auf dem Bauernhof. Seine erste Aufgabe lautet, dass er die Eier zählen und dem Bauern Bescheid sagen soll, wie viele es sind. Das ist aber gar nicht so einfach, schließlich liegen einzelne Eier, Zehner- und Hunderterkartons wild durcheinander. Die Mistgabel Misti gibt Tom den Tipp, alles erst einmal ordentlich einzupacken und aufzustapeln, das würde das Zählen erleichtern. Pom geht aber noch einen Schritt weiter: Warum sollte er schleppen und stapeln, wenn er auch ganz einfach die schriftliche Addition benutzen kann? Sorgfältig schreibt er die Zahlen so auf, dass die Hunderter genau unter den Hundertern stehen, die Zehner unter den Z...hier weiterlesen

Produktion: 2018

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Sammelmedium in Einfach Deutsch: Mathematik 1 - Grundlagen der Bruchrechnung

Das Rechnen mit Brüchen ist weniger kompliziert, als viele Schüler befürchten. Die acht Filme dieses Sammelmediums erläutern leicht verständlich die Grundlagen der Bruchrechnung und geben zahlreiche Beispiele für verschiedene Rechenarten. Inhalt dieses Sammelmediums: Grundlagen der Bruchrechnung, Brüche addieren und subtrahieren, Größter gemeinsamer Teiler, kleinstes gemeinsames Vielfaches, Brüche erweitern und kürzen, Brüche multiplizieren, Brüche dividieren, Dezimalbrüche, Unechte Brüche Der Text der Filme ist nach den Sprachanforderungen der Niveaustufe B1 vereinfacht worden, damit sich die SchülerInnen be...hier weiterlesen

Produktion: 2019

Einzellizenz oder
Klassenlizenz:
150,00 € (inkl. MwSt.)

Film: Sammelmedium in Einfach Deutsch: Mathematik 4 - Prozentrechnung

Sei es beim Errechnen eines Rabatts oder beim Schreiben einer Rechnung: Prozentrechnen wird im Alltag immer wieder gebraucht. Die vier Filme dieses Sammelmediums bringen den Schülern neben dem Prozentrechnen auch die Grundlagen der Statistik und der Zinsrechnung bei. Inhalt dieses Sammelmediums: Grundlagen Statistik, Prozentrechnung, Prozentrechnung - grafische Darstellung, Zinsrechnung Der Text der Filme ist nach den Sprachanforderungen der Niveaustufe B1 vereinfacht worden, damit sich die SchülerInnen besonders auf den Inhalt der Filme konzentrieren können. Dies betrifft vor allem die Satzstellung, die Vermeidung des Passivs und die Vereinfachung von Formulierungen. Bei d...hier weiterlesen

Produktion: 2019

Einzellizenz oder
Klassenlizenz:
100,00 € (inkl. MwSt.)

Film: Sparen

Wenn man etwas nicht sofort verwendet, das zur Verfügung steht, spricht man von Sparen. Man kann nicht nur Geld sparen, sondern auch Gegenstände. Die meisten Menschen verbinden sparen aber gedanklich mit Geld. Der Film erklärt das unterschiedliche Sparverhalten anhand der drei Freunde Lara, Tom und Jannis, die alle fünf Euro Taschengeld pro Woche erhalten. Lara gibt alles aus und gönnt sich so alle Freuden, ohne an später zu denken. Tom spart etwas, versagt sich aber nicht jeden kleinen Luxus. Jannis hingegen spart jeden Cent, weil er auf ein Ziel hinarbeitet. Lara ist bei unvorhergesehenen Ausgaben hilflos, Tom lebt gut mit seinem Kompromiss und Jannis ist a...hier weiterlesen

Produktion: 2018

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Uhr lesen

In diesem Video wird anhand anschaulicher Animationen erklärt, wie die Uhr gelesen wird. Und nebenher auch, warum und wie die Menschen Zeit messen.hier weiterlesen

Produktion: 2020

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Exponentialfunktion

Die Exponentialfunktion kann in verschiedenen Lebensbereichen angewendet werden, um eine bestimmte Art von Entwicklung darzustellen. Der Film gibt einige Beispiele aus dem Alltag und beschreibt dann die grundlegende Formel: Die Basis muss positiv sein - ist sie negativ, ist die Formel nicht definiert. Auch ergibt sie keinen Sinn, wenn die Basis 0 oder 1 ist. Sie kann allerdings größer oder kleiner als 1 sein. Der Film beschreibt, wann der Graph steigt und wann er fällt. Die Exponentialfunktion bleibt dabei stets im Koordinatensystem oberhalb der x-Achse, welche als Asymptote für den gezeigten Graphen fungiert. Der Film demonstriert eine alternative Art der Wertberechn...hier weiterlesen

Produktion: 2019

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Potenzfunktionen mit ganzzahligen Exponenten

Dieser Film beschäftigt sich mit den Eigenschaften von Potenzfunktionen mit ganzzahligen Exponenten. An einem Beispiel wird gezeigt, dass der zugehörige Graph eine Parabel ist. Da die Werte von x auch negativ sein können, erstreckt sich die Parabel auch über den negativen Bereich der x-Achse. Sie führt durch den Ursprungspunkt und ist achsensymmetrisch zur y-Achse. Das gilt für alle Potenzfunktionen mit geraden Zahlen. Potenzfunktionen dritten Grades und alle mit ungeraden Zahlen hingegen sind punktsymmetrisch zum Ursprung. Der Film zeigt, inwieweit sich die Graphen durch unterschiedliche Variablen verändern, und beschreibt das potenzielle, das quadratis...hier weiterlesen

Produktion: 2020

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Potenzfunktion mit nicht ganzzahligen Exponenten

Dieser Film knüpft inhaltlich direkt an den Lehrfilm über Potenzfunktionen mit ganzzahligen Exponenten an: Durch die Umkehrung der ursprünglichen Funktion entsteht eine Quadratfunktion. Der Graph dieser neuen Funktion ist das Spiegelbild der ersten an der Diagonalen x = y und achsensymmetrisch zur x-Achse des Koordinatensystems. Es wird gezeigt, dass die Quadratfunktion mit der Menge aller reellen Zahlen als Definitionsmenge nicht umkehrbar ist. Die Quadratwurzel wird definiert als Potenz mit gebrochenen Exponenten. Es wird anhand eines Beispiels demonstriert, wie dank der Intervallschachtelung auch Potenzen mit irrationalen Exponenten dargestellt werden können. Alle R...hier weiterlesen

Produktion: 2020

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Was ist ein Algorithmus?

Nerdie ist ungeduldig: Sein Modellauto lässt sich nicht zusammensetzen - da wird wohl die Bauanleitung falsch sein. Bytie unterbricht ihn und erklärt, dass der Bauplan nichts anderes ist als ein Algorithmus. Er lässt sich den Plan zeigen und findet schnell heraus, dass ein Nerdie einen Konstruktionsfehler gemacht hat - der Plan ist in Ordnung. Algorithmen werden unter anderem im Computer verwendet: Sie sagen dem Rechner genau, welche Aufgaben er Schritt für Schritt erledigen muss. Dabei sind sie immer eindeutig, determiniert, ausführbar und endlich und ergeben unter gleichen Voraussetzungen auch stets das gleiche Ergebnis. Bytie gibt diverse Alltagsbeispiele f&uum...hier weiterlesen

Produktion: 2020

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Lineare Gleichungen

Lineare Gleichungen sind Therme, die durch ein Gleichheitszeichen verbunden sind. Der Film erinnert daran, wie man sie dank der Äquivalenzumformung umstellen und ihre Variablen berechnen kann. Dann wird eine weitere Variable hinzugefügt und die Gleichung so umgestellt, dass eine Variable auf jeder Seite steht. Die beiden stehen in einem direkten Zusammenhang. Die Zuordnung wird erläutert: Für jedes x gibt es das passende y. Es werden mehrere zueinander gehörige Wertepaare ausgerechnet und in eine Tabelle eingetragen. Diese Werte werden ins Koordinatensystem übertragen. Verbindet man sie mit einer Linie, ergibt sich ein Graph. Der Film demonstriert anhand von...hier weiterlesen

Produktion: 2017

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Sammelmedium in Einfach Deutsch: Mathematik 3

Die Vielfalt des Rechnens mit Zahlen wird den Schülern in den 17 Filmen dieses Sammelmediums nahegebracht: Römische Zahlen, Primzahlen, Dezimalzahlen und negative Zahlen sind ebenso Themen wie verschiedene Rechengesetze. Inhalt dieses Sammelmediums: Dezimalzahlen, Römische Zahlen, Primzahlen, Negative Zahlen, Potenzen und Potenzgesetze, Dreisatz und zusammengesetzte Zuordnungen, Terme vereinfachen, Rechnen mit Termen, Äquivalenzumformungen, Lineare Gleichungen, Rechnen mit Dezimalzahlen, Rechengesetze, Runden und Überschlagen, Teilbarkeitsregeln, Primfaktorzerlegung, Negative Zahlen addieren und subtrahieren, Negative Zahlen multiplizieren und dividieren. Der Text...hier weiterlesen

Produktion: 2019

Einzellizenz oder
Klassenlizenz:
150,00 € (inkl. MwSt.)

Film: Einheiten umrechnen: Längen

Maßeinheiten begegnen uns täglich in vielen verschiedenen Situationen. Doch was verstehen wir darunter eigentlich genau? Was passiert, wenn man eine Zahl direkt von Zentimeter in Meter oder umgekehrt, von Meter in Zentimeter umrechnen will? Der Film greift genau diese Thematik auf und beschäftigt sich mit dem Umrechnen innerhalb der Längenmaße. Zunächst wird auf die Vorteile des metrischen Systems eingegangen. Darauf aufbauend greift der Film das Einheitenumrechnen von Längen auf. Hier werden die Einheiten Millimeter, Zentimeter, Dezimeter, Meter und Kilometer thematisiert und das Umrechnen zwischen den einzelnen Maßeinheiten anschaulich erkl&aum...hier weiterlesen

Produktion: 2020

Einzellizenz oder
Klassenlizenz:
49,65 € (inkl. MwSt.)

Film: Bruchrechnung, Dreisatz, Prozent- und Zinsrechnung

Warum Mathe lernen? Unsere ON! DVD zeigt, wo Bruchrechnung, Dreisatz, Prozent- und Zinsrechnung praktische Anwendung im täglichen Leben finden. Beim Einkauf, in der Ausbildung, im Studium - Mathe lernen lohnt sich! Come ON! - Reportage / Film: Ein Koch, eine Tiermedizinerin, ein Bürokaufmann, ein Kfz-Mechatroniker - in unserer ON! Reportage zeigen vier junge Leute, wie sie Mathematik ganz praktisch in ihrer Ausbildung einsetzen müssen, um alltägliche Aufgaben zu lösen. Sie zeigen uns, warum Mathe lernen clever ist! (11 Min) Check ON! - Grafisch animierte Erklärfilme: - Bruchrechnung (2 Min) - Dreisatz (2 Min) - Prozentrechnung (2 Min) - Zinsrechnung (2 Min) ...hier weiterlesen

Produktion: 2008

Einzellizenz oder
Klassenlizenz:
68,00 € (inkl. MwSt.)

Film: Stochastik - Zufallsversuche - Bedingte Wahrscheinlichkeiten - Satz von Bayes

Mathematik erlebnisnah erklärt. In unterhaltsamen Beispielen erklärt Martina Hirschmeier die Stochastik beispielsweise in der Lotto Annahmestelle, im Restaurant und am Geldautomaten. Inhaltlich geht es um: einstufige und mehrstufige Zufallsexperimente, Urnenmodell, Ziehen mit und ohne Zurücklegen, geordnete und ungeordnete Stichprobe, kombinatorische Abzählverfahren, Baumdiagramme, Pfadregeln für Baumdiagramme, Produktregeln, Multiplikationssatz, Additionssatz, Teilmengen von Ergebnismengen, Mengenalgebra, bedingte Wahrscheinlichkeit, Vierfeldertafel, Stochastische Unabhängigkeit, Satz von der totalen Wahrscheinlichkeit, Satz von Bayes. Die Zielgruppen des Fi...hier weiterlesen

Produktion: 2016

Einzellizenz oder
Klassenlizenz:
59,00 € (inkl. MwSt.)

Film: Fermats letzter Satz

Der Anwalt und Mathematiker Pierre de Fermat hatte in der ersten Hälfte des 17. Jahrhunderts eine kurze Randbemerkung in ein Buch geschrieben. In dieser stellte er eine mathematische Behauptung auf, für die er auch den Beweis gefunden habe. Doch blieb dieser Beweis unauffindbar. Generationen von Mathematikern bissen sich in den folgenden Jahrhunderten an diesem mathematischen Rätsel die Zähne aus. Viele hatten versucht, diesen "Großen Fermatschen Satz" zu beweisen, doch niemand schaffte es. Erst dem Mathematiker Andrew Wiles, der seit seinem 10. Lebensjahr den Beweis dafür finden wollte, gelang es 350 Jahre später, das Rätsel zu lösen. Im Juni...hier weiterlesen

Produktion: 1996

Einzellizenz oder
Klassenlizenz:
69,00 € (inkl. MwSt.)

Film: Dreieck - besondere Linien und Punkte im Dreieck

Es gibt Linien in allen Dreiecken, die besondere Erkenntnisse vermitteln. Der Film nennt die Seitenhalbierende, die Höhe des Dreiecks, die Mittelsenkrechte, die Winkelhalbierende und die Mittellinie. Es wird erläutert, wo und wie diese Linien verlaufen. Bestimmte Punkte entscheiden über ihre Lage im Dreieck. Der Schwerpunkt des Dreiecks zum Beispiel ist der Schnittpunkt aller Seitenhalbierenden. Der Mittelpunkt des Umkreises ist der Schnittpunkt aller Mittelsenkrechten, und der Mittelpunkt des Inkreises ist der Schnittpunkt der Winkelhalbierenden. Im Film wird erläutert, wie man die Fläche des Dreiecks berechnen kann, wenn man die Höhe und die Abhängigkeit der Mittellinien von der nicht i...hier weiterlesen

Produktion: 2014

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Dreiecke - Arten, Winkel, Umfang, Fläche

Liegen drei Punkte nicht auf einer Linie und sind durch drei Geraden verbunden, spricht man von einem Dreieck. Die Benennung der Eckpunkte erfolgt in Großbuchstaben. Sie beginnt in der unteren linken Ecke und verläuft gegen den Uhrzeigersinn. Die Seiten werden mit Kleinbuchstaben gekennzeichnet. Dabei wird jeweils der Buchstabe in klein verwendet, der in groß die gegenüberliegende Ecke bezeichnet. Es gibt gleichseitige, gleichschenklige und ungleichseitige Dreiecke. Bei ihnen allen beträgt die Summe der Innenwinkel 180 Grad, ihre Art aber verändert sich nach Art des Dreiecks: Drei Winkel von 60 Grad treten beim gleichseitigen Dreieck auf. Das gleichschenklige Dreieck hat zwei Innenwinkel,...hier weiterlesen

Produktion: 2014

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Satz des Pythagoras

Alle Dreiecke bestehen aus je einer Hypotenuse, einer Ankathete und einer Gegenkathete, also aus den drei Seiten a, b, und c. Jede dieser Seiten hat eine bestimmte Länge. Diese Seitenlängen können zueinander in Verbindung gesetzt werden, wenn man den Satz des Pythagoras nutzt: a²+b²=c². Rechnet man also die Quadrate von a und b zusammen, sind sie so groß wie das von c. Anders ausgedrückt sind die Quadrate von Ankathete und Gegenkathete so groß wie das der Hypotenuse, wie man geometrisch beweisen kann. Der Satz des Pythagoras kann auf unterschiedliche Arten bewiesen werden, von denen der Film zwei demonstriert. Für einen solchen Beweis muss man nicht unbedingt Quadrate benutzen, wie eindru...hier weiterlesen

Produktion: 2014

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Satz des Thales

In rechtwinkligen Dreiecken gibt es bestimmte Sachverhalte, die immer gleich sind, wie der Satz des Thales sagt. Im Film wird der Beweis geführt mit einer Geraden, die von einem Halbkreis doppelt geschnitten wird. Benennt man die beiden Schnittpunkte als Punkte A und B eines Dreiecks und wählt einen beliebigen Punkt C auf dem Halbkreis, so entsteht hier immer ein rechter Winkel. Ob der Punkt mittig oder mehr zu einem der Ränder hin gewählt wird, ist egal. Dieser Halbkreis ist der Thaleskreis. Wird ein Punkt C abseits davon gewählt, hat der dazugehörige Winkel niemals 90 Grad, was im Film unter Beweis gestellt wird. Ein rechtwinkliges Dreieck kann auch gleichschenklig sein, muss es aber ni...hier weiterlesen

Produktion: 2014

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Vierecke

Es gibt bestimmte Eigenschaften, die allen Vierecken gemein ist. Beispielsweise beträgt ihre Winkelsumme immer 360 Grad. Die Figuren haben alle stets vier Seiten, vier Ecken und vier Winkel. Der Film stellt die verschiedenen Formen von Vierecken vor. Er erklärt dabei die Erkennungszeichen der jeweiligen besonderen Form. Hat ein Viereck vier gleich Seiten und vier rechte Winkel, ist es ein Quadrat. Ein Rechteck hat vier rechte Winkel und zwei mal zwei gleiche Seiten. Ein Parallelogramm weist zwei mal zwei gleiche Winkel und zwei mal zwei gleiche Seiten auf. Die Raute hat vier gleiche Seite und zwei mal zwei gleiche Winkel, von denen jeweils die gleich groß sind, die sich gegenüber liegen. ...hier weiterlesen

Produktion: 2014

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Cosinus

In der Trigonometrie kann man mit dem Cosinus die Beziehungen zwischen den Seiten und den Winkeln eines Dreiecks darstellen. Ist das Dreieck rechtwinklig, liegt die Hypotenuse dem rechten Winkel gegenüber. Die beiden übrigen Seiten sind die Ankathete und die Gegenkathete. Man kann das Seitenverhältnis der Hypotenuse zur Ankathete oder zur Gegenkathete in Abhängigkeit des zwischen ihnen liegenden Winkels messen, indem man den Cosinus verwendet. Dies wird an einem Beispiel demonstriert, für das die Ankathete (b), die Hypotenuse (c) und der Winkel (C) verwendet werden: Dabei entspricht der Quotient von (b) und (c) dem Cosinus von (C). Sind also nur zwei dieser Größen bekannt, kann man das Dr...hier weiterlesen

Produktion: 2014

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Brüche - Grundlagen

Eine gebrochene Zahl nennt man Bruch. Sie ist nicht kaputt, man kann mit ihr noch arbeiten. Wenn man eine Zahl in gleiche Teile teilt, spricht man von einer Division. Das Ergebnis dieser Division ist der Quotient. Teilt man eine kleine Zahl durch eine größere und schreibt sie mit einem Bruchstrich untereinander, ist der Bruch gleichzeitig das Ergebnis der Division: Eins durch fünf etwa ist ein Fünftel, bzw. 1/5.Der Strich in der Mitte ist der Bruchstrich. Darüber steht der Zähler des Bruchs, er zeigt an, wie viele Teile er hat. Unter dem Strich steht der Nenner. Nach ihm ist der Bruch benannt. Im Beispiel steht dort die Fünf, also handelt es sich um F&u...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Brüche addieren und subtrahieren

Brüche mit ungleichnamigem Nenner kann man zuerst weder addieren noch subtrahieren. Man kann sie allerdings erweitern, bis ihre Nenner gleichnamig sind. Im gezeigten Beispiel geht es um 3/5 und 2/3. Die beiden Brüche werden erweitert, indem jeweils Zähler und Nenner mit dem Nenner des anderen Bruchs multipliziert werden. So kommt man hier auf 9/15 plus 10/15, also 19/15 oder 1 4/15.In einem weiteren Beispiel wird gezeigt, wie von der Summe zweier erweiterter Brüche ein anderer Bruch abgezogen werden kann. Dafür werden zwei Lösungswege vorgestellt: Im ersten werden wiederum beide Brüche erweitert, und das Endergebnis muss gekürzt werden. Im zweiten, ...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Brüche dividieren

Der Film zeigt, wie man Brüche dividieren kann. Es wird eine Aufgabe gestellt, in der 7 1/2 durch 3/10 geteilt werden soll. Zunächst wird die gemischte Zahl in den Bruch 15/2 verwandelt. Dann wird daran erinnert, dass man mit einer umgekehrten Multiplikation das Ergebnis einer Division überprüfen kann. Es wird gezeigt, dass es bei Brüchen ähnlich ist: Für die Division zweier Brüche multipliziert man den Kehrwert des zweiten mit dem ersten Bruch.Der Film demonstriert anhand verschiedener Rechnungen die notwendigen Lösungsschritte: Ein Bruch wird mit einer Zahl multipliziert, indem man sie mit dem Zähler multipliziert, während der Nenne...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Brüche erweitern und kürzen

Man kann Brüche beliebig erweitern, indem man ihren Zähler und Nenner mit ein und derselben Zahl multipliziert. Die Zahlen werden dadurch größer, während der Bruch seine Wertigkeit behält: 3/15 sind ebenso viel wie 1/5. Man erweitert Brüche zum Beispiel, um sie vergleichen zu können oder um zwei ungleichnamige Brüche gleichnamig zu machen: Dann kann man sie nämlich addieren und subtrahieren, dividieren und multiplizieren.Am Ende der Rechnung kann man überprüfen, ob man den Bruch, den man als Ergebnis erhalten hat, noch kürzen kann. Dafür prüft man, durch welche Zahl sowohl der Zähler als auch der Nenner teilb...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Brüche multiplizieren

Der Film zeigt an Alltagsbeispielen, warum es manchmal sinnvoll ist, Brüche zu multiplizieren. Mit ganzen Zahlen geschieht das, indem man die Zahl mit dem Zähler multipliziert und den Nenner so lässt, wie er ist. 1/3 mal 5 also ergibt 5/3. Möchte man zwei Stammbrüche miteinander multiplizieren, also zwei Brüche, deren beide Zähler 1 sind, werden ihre Nenner miteinander multipliziert.Zwei Brüche, die einen anderen Zähler als 1 haben, multipliziert man, indem man jeweils die Zähler und Nenner miteinander multipliziert und dazwischen einen Bruchstrich zieht. Bei dieser Methode erhält man schnell sehr große Zahlen. Um dabei nicht de...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Dezimalbrüche

Dezimalbrüche sind Dezimalzahlen, die ein Komma enthalten. Der Film erklärt, was genau Dezimalzahlen sind, und zeigt, dass die Zahlen sich jeweils verzehnfachen, wenn man sie um eine Stelle nach links verschiebt und eine Null einfügt. Entsprechend haben sie nur noch ein Zehntel des Werts, wenn man die Zahl um eine Stelle nach rechts verschiebt. Das geht auch, wenn vor dem Komma eine Null steht.Um eine Dezimalzahl in einen Bruch umzurechnen, schreibt man über den Bruchstrich alle Ziffern der Dezimalzahl ohne Komma und darunter eine Eins und die Anzahl der Stellen hinter dem Komma. 0,25 zum Beispiel ergibt so 25/100 beziehungsweise gekürzt ¼. Es werden die wi...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Dezimalsystem

Dank des Dezimalsystems können wir mit sehr großen Zahlen unkompliziert rechnen. Der Film zeigt einige frühere Rechen- und Zählsysteme wie das der Babylonier und Ägypter, ehe er auf die Erfindung des Dezimalsystems durch die Chinesen und Inder zu sprechen kommt. Er erklärt den genialen Trick des Verschiebens einer Ziffer um eine Stelle nach links, um den nächsthöheren Dezimalwert anzugeben.Die Darstellung einer Leerstelle war ungeklärt, bis die Null sich durchsetzte. Die Inder hatten bereits einen kleinen Kreis geschrieben, doch dank abergläubischer Furcht hatte er sich lange nicht etabliert. Im Jahr 825 schließlich schrieb ein arab...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Dezimalzahlen dividieren

Um einen Dezimalbruch durch einen anderen Dezimalbruch zu teilen, wandelt man sie beide erst in Brüche um. Dann bildet man den Kehrwert des zweiten Bruchs und multipliziert den ersten Bruch mit ihm. Beim Kürzen sieht man, dass man die Divisionsaufgabe ohne Komma erhalten hat. Und es zeigt sich, dass auch Dezimalzahlen erweiterbar sind wie Brüche.Durch die Multiplikation mit 10 bei Dividend und Divisor gleichzeitig verschiebt man das Komma so lange nach rechts, bis beim Divisor keines mehr steht. Das ist die gleichsinnige Kommaverschiebung. Erreicht man in der Rechnung das Komma im Dividenden, setzt man auch im Ergebnis eines. Es wird gezeigt, wie man durch die schriftliche ...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Grundlagen des Rechnens mit Dezimalzahlen

Wer zwei Dezimalbrüche addieren möchte, kann sie in unechte gleichnamige Brüche umwandeln oder sie alternativ untereinanderschreiben und Stelle für Stelle addieren. Dabei muss darauf geachtet werden, dass die Kommata immer genau untereinander stehen. Die Subtraktion zweier Dezimalbrüche funktioniert nach demselben Prinzip. Die Multiplikation eines Dezimalbruchs mit Zehnerpotenzen ist besonders einfach: Man verschiebt das Komma um so viele Stellen nach rechts, wie die Zehnerpotenz Nullen hat. Entsprechend ist es bei der Division: Hier wandert das Komma nach links. Wer zwei Dezimalzahlen multiplizieren möchte, wandelt sie in unechte Brüche um und multipliz...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Rechengesetze

Der Film stellt die Rechengesetze Kommutativgesetz, Assoziativgesetz und Distributivgesetz vor. Der Name Kommutativgesetz leitet sich vom lateinischen Wort für Tauschen her. Das Gesetz besagt, dass Summanden bei einer Addition und Faktoren bei einer Multiplikation vertauscht werden dürfen, ohne dass sich das Ergebnis ändert. Die entsprechenden Formeln werden gezeigt.Auf ähnliche Weise werden das Assoziativgesetz bzw. Klammergesetz und das Distributivgesetz erläutert. Ersteres besagt, dass Summanden oder Faktoren beliebig mit Klammern verbunden werden können, Letzteres, dass Multiplikation vor Addition geht oder, wie man in der Schule sagt, Punktrechnung vor S...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Signifikanz und Irrtumswahrscheinlichkeit

Möchte ein Unternehmen vor Beginn der Produktion eines Gegenstands herausfinden, ob überhaupt Interesse daran besteht, muss es Umfragen durchführen. Da man aber nicht alle potenziellen Käufer, also die Grundgesamtheit, befragen kann, wählt man nur einen kleinen Teil aus, nimmt also eine Stichprobe. Diese kann natürlich ein verfälschtes Ergebnis hervorbringen: Der Film erklärt die Grundprobleme der beurteilenden Statistik.Es wird ein fiktives Beispiel vorgestellt und erklärt, dass die beschreibende Statistik und Elemente der Wahrscheinlichkeitsrechnung zur beurteilenden Statistik herangezogen werden. Im Film wird der Bernoulli-Prozess erläu...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Statistische Erhebung

Um Daten für eine statistische Erhebung zu sammeln, kann man messen, zählen oder befragen - je nachdem, was man herausfinden möchte. Alle Messungen müssen auf dieselbe Art durchgeführt werden, und bei Umfragen muss es eine festgelegte Fragestellung geben, da sonst die Ergebnisse nicht vergleichbar sind. Man spricht hier von der Standardisierung. Es gibt sie für viele verschiedene Arten von Fragen.Durch die Standardisierung ist es möglich, die Ergebnisse in Diagrammen grafisch darzustellen. Allerdings ist es wichtig, die richtige Form von Diagramm für das Thema zu finden. Der Film stellt verschiedene Arten von Diagrammen vor und zeigt, wie passend od...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Wachstum - Grenzen

Für die Erklärung des begrenzten Wachstums gibt der Film das Beispiel einer fiktiven Firma, die ein Mobiltelefon auf den Markt bringt. Es wird prognostiziert, dass in einer bestimmten Gegend 30.000 Stück davon verkauft werden. Allein in der ersten Woche sind es schon 9.000 - aber das ist kein Grund, die Erwartungen nach oben zu regulieren: Es werden Woche für Woche weniger Telefone verkauft, und die Zahl der potenziellen Käufer nimmt stetig ab.Schließlich ist der Markt komplett gesättigt, sodass es gar keine Verkäufe mehr gibt. Stellt man diesen Vorgang grafisch dar, sieht man, dass eine bestimmte Grenze oder Schranke nicht überschritten wird....hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Wachstum - Begriff

Von Wachstum spricht man, wenn eine bestimmte Größe mit der Zeit zunimmt. Nimmt sie ab, handelt es sich um ein negatives Wachstum. Stellt man ein Wachstum grafisch dar, zeigt ein aufsteigender Graph ein positives und ein absteigender Graph ein negatives Wachstum an. Ist die Linie gerade, handelt es sich um ein lineares Wachstum.Der Film demonstriert die rekursive und die explizite Möglichkeit zur Beschreibung der zugrunde liegenden Wachstumsfunktion. Es wird die allgemeine explizite Beschreibung einer linearen Wachstumsfunktion gegeben: f(x) = a · x + a0. a0 steht hier für den Anfangswert. Hat a einen positiven Wert, ist auch das Wachstum positiv. Ist der Wert ...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Wachstum - exponentiell

Um das exponentielle Wachstum zu verdeutlichen, erzählt der Film die Legende von Buddhiram, der von seinem König als Belohnung so viele Reiskörner verlangte, wie auf einem Schachbrett lägen, wenn im ersten Feld eines, im zweiten zwei, im dritten vier und in allen weiteren jeweils doppelt so viele platziert würden wie im vorangegangenen.Es wird erklärt, was es mit der rekursiven und mit der expliziten Funktionsgleichung auf sich hat. Die Zuschauer erfahren, dass es auch ein negatives exponentielles Wachstum gibt, und bekommen für das positive und das negative Wachstum Alltagsbeispiele geliefert. Die drei Wachstumsmodelle des linearen, des quadratischen un...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Wachstum - logistisch

Bei der Zahlengeraden handelt es sich um ein mathematisches Hilfsmittel, das zur Veranschaulichung von Eigenschaften der Zahlen nützlich ist. Ihr Ursprung ist der Punkt 0. Die von hier nach rechts laufende Linie ist theoretisch endlos, was durch einen kleinen Pfeil verdeutlicht wird. Man zeichnet kurze senkrechte Striche in regelmäßigen Abständen durch die Linie, benennt sie mit aufsteigenden natürlichen Zahlen und erhält einen Zahlenstrahl.Eine weitere Linie wird nach links gezogen. Auch sie wird mit Strichen versehen, die mit negativen absteigenden Zahlen nummeriert werden. Nun handelt es sich um eine Zahlengerade. Der Film demonstriert, wie man davon math...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Zahlengerade

Bei der Zahlengeraden handelt es sich um ein mathematisches Hilfsmittel, das zur Veranschaulichung von Eigenschaften der Zahlen nützlich ist. Ihr Ursprung ist der Punkt 0. Die von hier nach rechts laufende Linie ist theoretisch endlos, was durch einen kleinen Pfeil verdeutlicht wird. Man zeichnet kurze senkrechte Striche in regelmäßigen Abständen durch die Linie, benennt sie mit aufsteigenden natürlichen Zahlen und erhält einen Zahlenstrahl.Eine weitere Linie wird nach links gezogen. Auch sie wird mit Strichen versehen, die mit negativen absteigenden Zahlen nummeriert werden. Nun handelt es sich um eine Zahlengerade. Der Film demonstriert, wie man davon math...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)

Film: Zufall und Repräsentativität

Eine Wahlprognose basiert auf einer Stichprobe - man kann dafür ja nicht gut alle Wahlberechtigten im Vorfeld befragen. Die Stichprobe muss so ausgewählt werden, dass möglichst keine Fehler das Gesamtergebnis verzerren. Wie leicht das passieren kann, zeigt der Film anhand eines Beispiels aus der Schule. Der Begriff der Irrtumswahrscheinlichkeit wird erklärt.Eine repräsentative Stichprobe muss zufällig gewählt werden, damit weder Geschmack noch Willkür noch unbewusste Entscheidungen hineinspielen. Bei der Wahlprognose allerdings wird die Stichprobe wegen der sehr breit gefächerten Grundgesamtheit in mehrere Schichten zerlegt, aus denen dann die ...hier weiterlesen

Produktion: 2015

Einzellizenz oder
Klassenlizenz:
19,00 € (inkl. MwSt.)


Lehrfilme für den Heimunterricht:

In unserem Webshop können Sie Lehrfilme und Dokumentationen für den Einsatz im Unterricht herunterladen und streamen. Sie können zwischen der Einzellizenz oder der Klassenlizenz wählen. Die Einzellizenz ermöglicht Lehrkräften die öffentliche Vorführung des Films in jedem schulischen Kontext. Die Klassenlizenz ermöglicht außerdem das Teilen des Films mit den Schülern im Distanzunterricht. Die Einzellizenz ist zeitlich nicht begrenzt. Die Nutzung der Klassenlizenz ist auf zwölf Monate limitiert.

Die Filme können pro Nutzer auf drei beliebigen Endgeräten wiedergegeben werden (z.B. 1 x PC, 1 x Tablet, 1 x Smartphone). Das Abspielen ist nur mit dem Fluxplayer (App) möglich, der Ihnen im Bestellprozess kostenlos zur Verfügung gestellt wird. Ein Einbetten der Filme in Lernplattformen (z.B. Moodle) ist nicht möglich.

Sie bestellen professionelle Unterrichtsmedien, die den strengen Vorschriften des Datenschutzes und des Urheberrechts entsprechen.

Sie haben weitere Fragen?

Unter "FAQ" beantworten wir Ihnen die häufigsten Fragen zu unserem Filmportal. Wenn Sie dort nicht fündig werden, nehmen Sie gerne Kontakt zu uns auf.

Für den Unterricht empfohlen:

Filme mit diesem Symbol werden explizit für den Schulunterricht empfohlen.

Logo des LMZ-BW für Unterrichtsfilme
Wer empfiehlt?

Filme mit Prädikat:

Hier erhalten Sie Filme mit dem Prädikat "wertvoll" und "besonders wertvoll".

Logo Prädikat besonders wertvoll
Wer vergibt die Prädikate?
Schulfilme-online.de website reputation

Mögliche Zahlungsmittel

Visa Card Master Card PayPal Standard Sofortüberweisung

Sie können wahlweise per Bankeinzug, Kreditkarte, Sofortüberweisung oder Paypal bezahlen.