Unterrichtsmaterial: Filme Mathematik

Film: Sphärische Geometrie und geografische Ortsbestimmung

Zwei zentrale Themen der Fächer Geografie und Mathematik Dieser interessante und hochaktuelle Film verbindet zwei zentrale Themen der Fächer Geografie und Mathematik. Mit Hilfe von Realaufnahmen, Grafiken und Computeranimationen werden, sachlogisch aufbauend, die folgenden Inhaltsschwerpunkte anschaulich dargestellt und erörtert. Inhaltsschwerpunkte:- Geometrie von Kreis und Kugel- Großkreis und Kleinkreis- Breitengrade und Längengrade (Meridiane)- Gitternetz (regional) und Gradnetz (global)- Koordinaten, Nullmeridian, Äquator- Berechnungen Kilometer, Grad, Minute, Sekunde- Berechnung der Bogenlänge - Navigation- Bestimmung des Erdumfangs - Eratosthene...hier weiterlesen

Produktion: 2003

Download
mit Vorführlizenz:
49,00 €(inkl. MwSt.)

Film: Integral- und Differentialrechnung

Im Mittelpunkt dieser didaktischen DVD steht ein Unterrichtsfilm, der mit Humor, geschichtlichen Bezügen (Ägypter, Griechen, Archimedes, Newton, Leibniz) und einem aktuellen Anwendungsbeispiel das Thema Integral- und Differentialrechnung anschaulich und interessant beleuchtet. Schwerpunkt des Films ist die visuelle Erläuterung des Zusammenhangs von Integrieren und Ableiten am Beispiel der Weg-Zeit-Funktion, der Geschwindigkeits-Zeit-Funktion und der Beschleunigungs-Zeit-Funktion. Durch ein interaktives Applet kann der Zusammenhang von Integrieren und Differenzieren wiederholt, vertieft und individuell erprobt werden, um den Verstehensprozess zu fördern und Grundwissen ...hier weiterlesen

Produktion: 2010

Download
mit Vorführlizenz:
50,00 €(inkl. MwSt.)

Film: Brüche - Grundlagen

Eine gebrochene Zahl nennt man Bruch. Sie ist nicht kaputt, man kann mit ihr noch arbeiten. Wenn man eine Zahl in gleiche Teile teilt, spricht man von einer Division. Das Ergebnis dieser Division ist der Quotient. Teilt man eine kleine Zahl durch eine größere und schreibt sie mit einem Bruchstrich untereinander, ist der Bruch gleichzeitig das Ergebnis der Division: Eins durch fünf etwa ist ein Fünftel, bzw. 1/5.Der Strich in der Mitte ist der Bruchstrich. Darüber steht der Zähler des Bruchs, er zeigt an, wie viele Teile er hat. Unter dem Strich steht der Nenner. Nach ihm ist der Bruch benannt. Im Beispiel steht dort die Fünf, also handelt es sich um F&u...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Brüche addieren und subtrahieren

Brüche mit ungleichnamigem Nenner kann man zuerst weder addieren noch subtrahieren. Man kann sie allerdings erweitern, bis ihre Nenner gleichnamig sind. Im gezeigten Beispiel geht es um 3/5 und 2/3. Die beiden Brüche werden erweitert, indem jeweils Zähler und Nenner mit dem Nenner des anderen Bruchs multipliziert werden. So kommt man hier auf 9/15 plus 10/15, also 19/15 oder 1 4/15.In einem weiteren Beispiel wird gezeigt, wie von der Summe zweier erweiterter Brüche ein anderer Bruch abgezogen werden kann. Dafür werden zwei Lösungswege vorgestellt: Im ersten werden wiederum beide Brüche erweitert, und das Endergebnis muss gekürzt werden. Im zweiten, ...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Brüche dividieren

Der Film zeigt, wie man Brüche dividieren kann. Es wird eine Aufgabe gestellt, in der 7 1/2 durch 3/10 geteilt werden soll. Zunächst wird die gemischte Zahl in den Bruch 15/2 verwandelt. Dann wird daran erinnert, dass man mit einer umgekehrten Multiplikation das Ergebnis einer Division überprüfen kann. Es wird gezeigt, dass es bei Brüchen ähnlich ist: Für die Division zweier Brüche multipliziert man den Kehrwert des zweiten mit dem ersten Bruch.Der Film demonstriert anhand verschiedener Rechnungen die notwendigen Lösungsschritte: Ein Bruch wird mit einer Zahl multipliziert, indem man sie mit dem Zähler multipliziert, während der Nenne...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Brüche erweitern und kürzen

Man kann Brüche beliebig erweitern, indem man ihren Zähler und Nenner mit ein und derselben Zahl multipliziert. Die Zahlen werden dadurch größer, während der Bruch seine Wertigkeit behält: 3/15 sind ebenso viel wie 1/5. Man erweitert Brüche zum Beispiel, um sie vergleichen zu können oder um zwei ungleichnamige Brüche gleichnamig zu machen: Dann kann man sie nämlich addieren und subtrahieren, dividieren und multiplizieren.Am Ende der Rechnung kann man überprüfen, ob man den Bruch, den man als Ergebnis erhalten hat, noch kürzen kann. Dafür prüft man, durch welche Zahl sowohl der Zähler als auch der Nenner teilb...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Brüche multiplizieren

Der Film zeigt an Alltagsbeispielen, warum es manchmal sinnvoll ist, Brüche zu multiplizieren. Mit ganzen Zahlen geschieht das, indem man die Zahl mit dem Zähler multipliziert und den Nenner so lässt, wie er ist. 1/3 mal 5 also ergibt 5/3. Möchte man zwei Stammbrüche miteinander multiplizieren, also zwei Brüche, deren beide Zähler 1 sind, werden ihre Nenner miteinander multipliziert.Zwei Brüche, die einen anderen Zähler als 1 haben, multipliziert man, indem man jeweils die Zähler und Nenner miteinander multipliziert und dazwischen einen Bruchstrich zieht. Bei dieser Methode erhält man schnell sehr große Zahlen. Um dabei nicht de...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Dezimalbrüche

Dezimalbrüche sind Dezimalzahlen, die ein Komma enthalten. Der Film erklärt, was genau Dezimalzahlen sind, und zeigt, dass die Zahlen sich jeweils verzehnfachen, wenn man sie um eine Stelle nach links verschiebt und eine Null einfügt. Entsprechend haben sie nur noch ein Zehntel des Werts, wenn man die Zahl um eine Stelle nach rechts verschiebt. Das geht auch, wenn vor dem Komma eine Null steht.Um eine Dezimalzahl in einen Bruch umzurechnen, schreibt man über den Bruchstrich alle Ziffern der Dezimalzahl ohne Komma und darunter eine Eins und die Anzahl der Stellen hinter dem Komma. 0,25 zum Beispiel ergibt so 25/100 beziehungsweise gekürzt ¼. Es werden die wi...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Dezimalsystem

Dank des Dezimalsystems können wir mit sehr großen Zahlen unkompliziert rechnen. Der Film zeigt einige frühere Rechen- und Zählsysteme wie das der Babylonier und Ägypter, ehe er auf die Erfindung des Dezimalsystems durch die Chinesen und Inder zu sprechen kommt. Er erklärt den genialen Trick des Verschiebens einer Ziffer um eine Stelle nach links, um den nächsthöheren Dezimalwert anzugeben.Die Darstellung einer Leerstelle war ungeklärt, bis die Null sich durchsetzte. Die Inder hatten bereits einen kleinen Kreis geschrieben, doch dank abergläubischer Furcht hatte er sich lange nicht etabliert. Im Jahr 825 schließlich schrieb ein arab...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Dezimalzahlen dividieren

Um einen Dezimalbruch durch einen anderen Dezimalbruch zu teilen, wandelt man sie beide erst in Brüche um. Dann bildet man den Kehrwert des zweiten Bruchs und multipliziert den ersten Bruch mit ihm. Beim Kürzen sieht man, dass man die Divisionsaufgabe ohne Komma erhalten hat. Und es zeigt sich, dass auch Dezimalzahlen erweiterbar sind wie Brüche.Durch die Multiplikation mit 10 bei Dividend und Divisor gleichzeitig verschiebt man das Komma so lange nach rechts, bis beim Divisor keines mehr steht. Das ist die gleichsinnige Kommaverschiebung. Erreicht man in der Rechnung das Komma im Dividenden, setzt man auch im Ergebnis eines. Es wird gezeigt, wie man durch die schriftliche ...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Grundlagen des Rechnens mit Dezimalzahlen

Wer zwei Dezimalbrüche addieren möchte, kann sie in unechte gleichnamige Brüche umwandeln oder sie alternativ untereinanderschreiben und Stelle für Stelle addieren. Dabei muss darauf geachtet werden, dass die Kommata immer genau untereinander stehen. Die Subtraktion zweier Dezimalbrüche funktioniert nach demselben Prinzip. Die Multiplikation eines Dezimalbruchs mit Zehnerpotenzen ist besonders einfach: Man verschiebt das Komma um so viele Stellen nach rechts, wie die Zehnerpotenz Nullen hat. Entsprechend ist es bei der Division: Hier wandert das Komma nach links. Wer zwei Dezimalzahlen multiplizieren möchte, wandelt sie in unechte Brüche um und multipliz...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Rechengesetze

Der Film stellt die Rechengesetze Kommutativgesetz, Assoziativgesetz und Distributivgesetz vor. Der Name Kommutativgesetz leitet sich vom lateinischen Wort für Tauschen her. Das Gesetz besagt, dass Summanden bei einer Addition und Faktoren bei einer Multiplikation vertauscht werden dürfen, ohne dass sich das Ergebnis ändert. Die entsprechenden Formeln werden gezeigt.Auf ähnliche Weise werden das Assoziativgesetz bzw. Klammergesetz und das Distributivgesetz erläutert. Ersteres besagt, dass Summanden oder Faktoren beliebig mit Klammern verbunden werden können, Letzteres, dass Multiplikation vor Addition geht oder, wie man in der Schule sagt, Punktrechnung vor S...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Signifikanz und Irrtumswahrscheinlichkeit

Möchte ein Unternehmen vor Beginn der Produktion eines Gegenstands herausfinden, ob überhaupt Interesse daran besteht, muss es Umfragen durchführen. Da man aber nicht alle potenziellen Käufer, also die Grundgesamtheit, befragen kann, wählt man nur einen kleinen Teil aus, nimmt also eine Stichprobe. Diese kann natürlich ein verfälschtes Ergebnis hervorbringen: Der Film erklärt die Grundprobleme der beurteilenden Statistik.Es wird ein fiktives Beispiel vorgestellt und erklärt, dass die beschreibende Statistik und Elemente der Wahrscheinlichkeitsrechnung zur beurteilenden Statistik herangezogen werden. Im Film wird der Bernoulli-Prozess erläu...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Statistische Erhebung

Um Daten für eine statistische Erhebung zu sammeln, kann man messen, zählen oder befragen - je nachdem, was man herausfinden möchte. Alle Messungen müssen auf dieselbe Art durchgeführt werden, und bei Umfragen muss es eine festgelegte Fragestellung geben, da sonst die Ergebnisse nicht vergleichbar sind. Man spricht hier von der Standardisierung. Es gibt sie für viele verschiedene Arten von Fragen.Durch die Standardisierung ist es möglich, die Ergebnisse in Diagrammen grafisch darzustellen. Allerdings ist es wichtig, die richtige Form von Diagramm für das Thema zu finden. Der Film stellt verschiedene Arten von Diagrammen vor und zeigt, wie passend od...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Wachstum - Grenzen

Für die Erklärung des begrenzten Wachstums gibt der Film das Beispiel einer fiktiven Firma, die ein Mobiltelefon auf den Markt bringt. Es wird prognostiziert, dass in einer bestimmten Gegend 30.000 Stück davon verkauft werden. Allein in der ersten Woche sind es schon 9.000 - aber das ist kein Grund, die Erwartungen nach oben zu regulieren: Es werden Woche für Woche weniger Telefone verkauft, und die Zahl der potenziellen Käufer nimmt stetig ab.Schließlich ist der Markt komplett gesättigt, sodass es gar keine Verkäufe mehr gibt. Stellt man diesen Vorgang grafisch dar, sieht man, dass eine bestimmte Grenze oder Schranke nicht überschritten wird....hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)

Film: Wachstum - Begriff

Von Wachstum spricht man, wenn eine bestimmte Größe mit der Zeit zunimmt. Nimmt sie ab, handelt es sich um ein negatives Wachstum. Stellt man ein Wachstum grafisch dar, zeigt ein aufsteigender Graph ein positives und ein absteigender Graph ein negatives Wachstum an. Ist die Linie gerade, handelt es sich um ein lineares Wachstum.Der Film demonstriert die rekursive und die explizite Möglichkeit zur Beschreibung der zugrunde liegenden Wachstumsfunktion. Es wird die allgemeine explizite Beschreibung einer linearen Wachstumsfunktion gegeben: f(x) = a · x + a0. a0 steht hier für den Anfangswert. Hat a einen positiven Wert, ist auch das Wachstum positiv. Ist der Wert ...hier weiterlesen

Produktion: 2015

Download
mit Vorführlizenz:
29,00 €(inkl. MwSt.)


Filme mit Vorführlizenz:

In dieser Schulmediathek können Sie Filme für Ihre Bildungsarbeit downloaden. Wir bieten Medien für Schulen in allen Altersklassen und für jedes Unterrichtsfach. Alle Lehrfilme, Dokus und Spielfilme beinhalten ein "nicht gewerbliches öffentliches Vorführrecht" (Ö-Recht). Damit können Sie die Filme neben dem Schulunterricht (Schullizenz) auch in der außerschulischen Bildungs- und Kulturarbeit einsetzen ohne das Urheberrecht zu verletzen.

Filme zeigen, wann und wo Sie wollen:

Nicht kommerzielle Filmvorführungen sind mit unseren lizensierten Downloads zu jeder Zeit möglich. Unsere Filme kommen regelmäßig in Schulen, Unis, Volkshochschulen, Museen, Kirchen, Vereinen, Gewerkschaften, Arztpraxen, Jugendclubs, Kitas, Erwachsenen- und Seniorenkreisen, Parteiveranstaltungen, in beruflichen Fort- und Weiterbildungen, und an vielen weiteren Spielorten zum Einsatz.

Filme nur als Download?

Die meisten Downloads gestatten Ihnen auch, die Filme einmal auf DVD zu brennen! Die Vorführlizenz gilt dann auch für die gebrannte DVD. Den Brennvorgang starten Sie bequem aus der Player-Software, mit der Sie auch die Downloads abspielen (Flux-Player). Alles was Sie brauchen ist ein DVD-Rohling und ein DVD-Brenner. Der Flux-Player ist selbstverständlich kostenlos und kann auf dieser Seite heruntergeladen werden. Der Player läuft als Software oder App auf allen Ihren Endgeräten (PC, Mac, Smartphone, Tablet, u.a.)

Sie haben weitere Fragen?

Unter "FAQ" beantworten wir Ihnen die häufigsten Fragen zu unserem Filmportal. Wenn Sie dort nicht fündig werden, nehmen Sie gerne Kontakt zu uns auf.

Für den Unterricht empfohlen:

Filme mit diesem Symbol werden explizit für den Schulunterricht empfohlen.

Logo des LMZ-BW für Unterrichtsfilme
Wer empfiehlt?

Filme mit Prädikat:

Hier erhalten Sie Filme mit dem Prädikat "wertvoll" und "besonders wertvoll".

Logo Prädikat besonders wertvoll
Wer vergibt die Prädikate?


DVDs mit Verleih- und Vorführrecht erhalten Sie in unserem DVD-Shop unter www.filmsortiment.de oder bei Ihrer Bildstelle, Medienzentrum oder Medienzentrale.

Schulfilme-online.de website reputation

Mögliche Zahlungsmittel

Visa Card Master Card Rechnung Sofortüberweisung

Sie können wahlweise per Bankeinzug, Kreditkarte, Sofortüberweisung oder auf Rechnung bezahlen. Der Kauf auf Rechnung steht nur Kunden aus Deutschland zur Verfügung.